
Ahmad Humayun
540-824-8988 | ahmad35@vt.edu | linkedin.com/in/ahmayun | github.com/ahmayun | personal-website

Education

Virginia Tech Blacksburg, VA
PhD in Computer Science, Software Engineering Aug 2021 - Current
Relevant Courses: Advanced Topics in Software Engineering, Hot Topics in Machine Learning (ML) and Security

Lahore University of Management Sciences Lahore, Pakistan
Bachelor of Computer Science Aug 2017 - May 2021
Relevant Courses: Big Data Analytics, Distributed Systems, Data Mining, Hardware Acceleration for AI, Speech

Processing, Topics in Computer and Network Security, Databases.

Publications

Paper | MLSys 2026 | W. Gill, A. Humayun, ... 2 more. “ProToken: Token-Level Attribution for Federated Large Language Models”.

Paper | ICPC 2026 | Y. Wu, X. Zhou, A. Humayun, ... 2 more. “Generating and Understanding Tests via Path-Aware Symbolic Execution...”.

Paper, Artifact | In Review | S. Haroon, A. Khan, A. Humayun, ... 5 more. “How Accurately Do Large Language Models Understand Code?”.

Paper, Code | FSE 2024 | Y. Wu, A. Humayun, M. Gulzar, M. Kim. “Natural Symbolic Execution-Based Testing for Big Data Analytics”.

Paper, Code | IEEE ASE 2023 | A. Humayun, Y. Wu, M. Kim, M. Gulzar. “NaturalFuzz: Natural Input Generation for Big Data Analytics”.

Paper, Code | ESEC/FSE 2023 | A. Humayun, M. Kim, M. Gulzar. “Co-dependence Aware Fuzzing for Dataflow-based Big Data Analytics”.

Professional Experience

Amazon Web Services Santa Clara, CA
Applied Scientist (Intern) May 2025 - August 2025

• Developed a RAG-based, LLM-powered tool (using LangGraph with AWS Bedrock) that automatically models
complex distributed algorithms in P, a resource-constrained language, deployed as both a standalone tool and
MCP server. Applied OWASP LLM security controls: input sanitization against prompt-injection, static
analysis validation of generated code, and containerized sandboxing to isolate code execution. Increased pass@k
on internally developed benchmarks by ≈ 71% while reducing token usage by ≈ 12%.

• Engineered a Java library, with Log4j logging, to translate abstract network messages (generated by P models)
into executable API calls for fault detection. Thoughtful API-design to handle both streaming and batch inputs.

Amazon Web Services Santa Clara, CA
Applied Scientist (Intern) May 2024 - August 2024

• Enhanced automated testing infrastructure for improving security of critical AWS APIs by building a
mutation-based fuzzer for generating valid request chains. Delivered a PoC for AWS S3 (based on
Schemathesis) that increased “happy case” sequences by ≈ 40%. Uncovered a bug in the upstream library deemed
critical after triage.

Virginia Tech, Department of Computer Science Blacksburg, VA
Research Assistant - Prof. Muhammad Ali Gulzar August 2021 - Present

• Improving security, automated testing, and formal verification for data-intensive distributed programs.

• Worked on developing novel methods to improve the state-of-the-art in security and reliability for peta-byte scale,
data-intensive applications, including ML systems. Relevant projects: DepFuzz, NaturalFuzz, NaturalSym, LLMs

• My tools have automatically exposed several faults in production software, including Apache Spark and Apache
Flink. Example. Through my work, I have developed a deep theoretical understanding of distributed consensus
algorithms and fault tolerance, as well as familiarity with internals of complex practical distributed systems like
Spark.

Technical Skills

Languages: Java, Scala, SQL, C/C++, Python, JavaScript, Haskell, Intel x86, JVM Bytecode, Go, TypeScript, R
Tools and Frameworks: LangChain, LangGraph, MCP Servers, Log4j, Spark, PySpark, Hadoop, SBT, Maven,
Node.js, React, Flask, Flutter, FastAPI, HuggingFace, Keras, PyTorch, LLVM, ptrace, gcc, clang, Git, Docker, CVC5,
Z3, Lean, SMT-lib, MLlib, AWS Bedrock

mailto:ahmad35@vt.edu
https://linkedin.com/in/ahmayun
https://github.com/ahmayun
https://ahmayun.github.io/
https://arxiv.org/pdf/2601.19672
https://arxiv.org/pdf/2506.19287
https://arxiv.org/pdf/2504.04372
https://sabaat.github.io/llm-code-comprehension/
https://dl.acm.org/doi/pdf/10.1145/3660825
https://github.com/UCLA-SEAL/NaturalSym.git
https://people.cs.vt.edu/~gulzar/assets/pdf/ase23_naturalfuzz.pdf
https://github.com/SEED-VT/NaturalFuzz
https://people.cs.vt.edu/~gulzar/assets/pdf/depfuzz.pdf
https://github.com/SEED-VT/DepFuzz.git
https://github.com/schemathesis/schemathesis/issues/2353
https://people.cs.vt.edu/~gulzar/assets/pdf/depfuzz.pdf
https://people.cs.vt.edu/~gulzar/assets/pdf/ase23_naturalfuzz.pdf
https://dl.acm.org/doi/pdf/10.1145/3660825
https://arxiv.org/pdf/2504.04372
https://issues.apache.org/jira/browse/FLINK-38397

Selected Projects

Token-Level Attribution for Distributed LLM Training | Backdoor Detection, Adversarial ML, Provenance, Security

• Worked on ProToken, a security-oriented provenance system that attributes generated tokens in federated LLMs
to specific clients, even under adversarial conditions.

• Implemented a attribution pipeline enabling tractable forensic analysis of compromised federated updates.

• Developed a rigorous backdoor evaluation harness: injected trigger–response attacks into selected clients and
achieved 98.62% accuracy in identifying poisoned contributors across 16 configurations.

• Validated robustness by scaling attribution to 55 clients, maintaining 92–95% detection accuracy on Gemma,
Llama, SmolLM, and Qwen families.

• Under review at MLSys 2026

Adversarial Stress-Testing of LLM Code Understanding | Fault Injection, Semantic-Preserving Attacks

• Conducted a large-scale adversarial evaluation of LLM code comprehension by systematically injecting faults
into real-world programs and assessing models’ ability to localize vulnerabilities. (Paper, Arifact)

• Developed a configurable framework for generating semantic-preserving perturbations (e.g., variable renaming,
dead code, comment changes) to simulate subtle evasion-style attacks on model reasoning.

• Demonstrated that these semantic-preserving attacks cause up to 78% degradation in debugging accuracy,
revealing brittleness and shallow representational understanding.

• Designed a two-phase validation pipeline ensuring specification integrity and eliminating contaminated or
unverifiable tasks prior to adversarial stress testing.

• Executed over 600K debugging tasks across nine LLMs, quantifying model susceptibility to non-functional
adversarial code transformations and identifying structural patterns correlated with failure.

© DAG-based Fuzzing for Distributed Frameworks | Program Synthesis, Property Testing, Scala, SQL, Optimizers

• Built a program-synthesis framework to synthesize dataflow programs e.g., Tensorflow and Spark. The framework
provides tools to generate and analyze DAGs, the user writes a module to lower the DAG to a language of choice.

• Designed a state-aware concretization engine to generate high-validity dataflows.

• Implemented a novel property test to find UDF non-determinism issues in the query optimizer. This property test
found a bug in the Spark optimizer. Reported a reproducible, minimal bug example to Spark JIRA.

• Reported several faults in Apache projects: FLINK-38366, FLINK-38397, FLINK-38446, FLINK-38637, SPARK-51798, SPARK-54196

© A Fuzzing Distributed Programs using Data Provenance | Scala, Spark, HDFS, Java, Maven, MapReduce, Git

• Developed a novel technique for efficient and effective fuzzing of Big Data (DISC) applications.

• Engineered taint-analysis engine to track provenance of data, associating them with relevant program regions.

• Implemented automatic framework abstraction to isolate application code from the complex framework below.

• Modified Scala compiler plugin scoverage to capture fuzzing coverage efficiently.

• Reimplemented state-of-the-art fuzzing techniques to use as baselines. Improved fault detection rate by 3.4× vs
Jazzer. The resulting paper was Accepted at ESEC/FSE 2023. Acceptance Rate: 12.9% (Unconditional).

� Transformer LLMs for Code Comprehension | HuggingFace, FastAPI, PyTorch, Jupyter, BERT, GPT

• Trained various LLM encoder stacks (e.g. BERT) to create general-purpose embeddings for code understanding.

• Analyzed 12K+ webpage JavaScript files and performed unsupervised training and clustering (link) of embeddings
using DistilBERT. Visualized after dimensionality reduction with t-SNE showing efficacy for code comprehension.

© A NaturalFuzz | Scala, Taint-Analysis, Apache Spark, Apache Hadoop, HDFS, Java, GPT2, LLM, BERT, SQL

• Developed a novel technique for efficiently generating natural-looking inputs for DISC applications.

• Designed algorithms to perform intelligent reduction of data using taint analysis.

• Engineered a modular system with complex interlinked components to fully automate the idea.

• Used state-of-the-art LLMs e.g. GPT2 and BERT to quantify the naturalness of synthetic data.

• Collaborated effectively with a team to bring the research idea into fruition.

• Wrote an end to end research paper that got accepted at IEEE/ACM ASE 2023.

RAFT-based Distributed Key-Value Store | Go, Golang, Distributed Algorithms

• Implemented a distributed key-value storage service using the distributed consensus algorithm RAFT in Golang,
demonstrating proficiency in both distributed systems and the Go programming language.

• Designed and developed a fault-tolerant and highly available distributed system capable of electing leaders,
replicating logs, and ensuring consensus among a cluster of nodes.

https://arxiv.org/pdf/2504.04372
https://sabaat.github.io/llm-code-comprehension/
https://github.com/ahmayun/dag-fuzzer-generalized.git
https://issues.apache.org/jira/browse/SPARK-51798
https://issues.apache.org/jira/browse/FLINK-38366
https://issues.apache.org/jira/browse/FLINK-38397
https://issues.apache.org/jira/browse/FLINK-38446
https://issues.apache.org/jira/browse/FLINK-38637
https://issues.apache.org/jira/browse/SPARK-51798
https://issues.apache.org/jira/browse/SPARK-54196
https://github.com/SEED-VT/DepFuzz
https://people.cs.vt.edu/~gulzar/assets/pdf/depfuzz.pdf
https://imgur.com/7u5mus4
https://imgur.com/7u5mus4
https://github.com/SEED-VT/NaturalFuzz
https://people.cs.vt.edu/~gulzar/assets/pdf/ase23_naturalfuzz.pdf

• Utilized Go’s concurrency features, including goroutines and channels, to build a concurrent and efficient
implementation that can handle concurrent requests and maintain system stability.

• Tested the RAFT implementation extensively, including scenarios involving network disruptions, node failures, and
recovery, to validate its correctness and resilience.

LLVM Pass for Lazy Code Motion | LLVM, Compilers, Optimization

• Implemented Lazy Code Motion (LCM) optimization pass in LLVM using four dataflow analysis passes.

• Developed preprocessing pass to split critical edges and basic blocks for safe temporary insertion.

• Designed postponable expressions pass to minimize register pressure by delaying temporary placement.

• Measured performance of the implementation on microbenchmarks. Reduced dynamic instruction counts across
seven microbenchmark categories with 100 variants each. Full technical report.

© Omniscient Debugger for Python | x86, ptrace, strace, ELF, Python, Cython, Linux, Kernel

• Engineered a debugger for Python applications that has the capability of stepping backward temporally.

• Used ptrace to intercept system calls and record program state selected points to be replayed later.

Benchmarking Framework for Software Debloating | LLVM, C, C++, Docker, Python, gcc, clang

• Researched and planned the feasibility of developing a benchmarking framework for software debloating tools.

• Developed an orchestrator for Docker containers in Python for facilitating software debloating research.

• Led a group of researchers to integrate the software debloating tool Chisel into the benchmarking framework.

Blocking Non-Essential JavaScript on Web Pages | JavaScript, HTML, CSS, MDN, Chrome

• Developed a browser extension for Mozilla Firefox to classify and block non-essential JavaScript from running on
resource-constrained devices. Developed on-board lightweight classifiers for JS classification.

© React Website with ExpressJS Backend | React, JavaScript, Bootstrap, Firebase, OAuth
• Lead the development of an online food ordering system using the REACT JavaScript framework with Firebase
integration and an ExpressJS backend. The system consisted of 3 modules (Admin, Customer, Server).

References

• Dr. Muhammad Ali Gulzar (Ph.D. Advisor) - Assistant Professor, Virginia Tech

gulzar@vt.edu || � https://people.cs.vt.edu/gulzar

• Prof. Miryung Kim (Research Collaborator) - Professor and Vice Chair of Graduate Studies, UCLA

miryung@cs.ucla.edu || � https://web.cs.ucla.edu/miryung/

• Dr. Dan Williams (PhD Advisory Committee Member) - Assistant Professor, Virginia Tech

djwillia@cs.vt.edu || � https://people.cs.vt.edu/djwillia/

https://github.com/ahmayun/cs5544-spring-23/blob/main/final-writeup.pdf
https://github.com/ahmayun/python-omniscient-debugger.git
https://github.com/punnal/Food-Ordering-System.git
mailto:gulzar@vt.edu
https://people.cs.vt.edu/~gulzar
mailto:miryung@cs.ucla.edu
https://web.cs.ucla.edu/~miryung/
mailto:djwillia@cs.vt.edu
https://people.cs.vt.edu/djwillia/

	Education
	Publications
	Professional Experience
	Technical Skills
	Selected Projects
	References

